题目链接:点我
题目
You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in decimal notation. As you know N! = 1*2*...*N. For example, 5! = 120, 120 contains one zero on the trail.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case contains an integer Q (1 ≤ Q ≤ 108) in a line.
Output
For each case, print the case number and N. If no solution is found then print 'impossible'.
Sample Input
3
1
2
5
Sample Output
Case 1: 5
Case 2: 10
Case 3: impossible
题意:
求是否存在一个数,它的阶乘末尾有q个0.
思路:
我们知道,在n!中,每一个末尾0都是由2 和 5 贡献的,那么我们只需要知道前n个数中有多少对2 和5即可,然后我们发现,5的数量比2 会少很多,所以,我们只需要知道有多少个5就可以了,然后我们直接在所有可能的n中进行二分即可
代码:
1 |
|