CC

自然万物都趋向从有序变得无序

0%

Connected Graph POJ1737 高精度

题目链接

题目


An undirected graph is a set V of vertices and a set of E∈{V*V} edges.An undirected graph is connected if and only if for every pair (u,v) of vertices,u is reachable from v.
You are to write a program that tries to calculate the number of different connected undirected graph with n vertices.
For example,there are 4 different connected undirected graphs with 3 vertices.

这里写图片描述

Input

The input contains several test cases. Each test case contains an integer n, denoting the number of vertices. You may assume that 1<=n<=50. The last test case is followed by one zero.

Output

For each test case output the answer on a single line.

Sample Input

1
2
3
4
0

Sample Output

1
1
4
38

题意:

给你一个无向图,问你有多少种不同的方式使这个图连通.

思路:

n 最大是50, 所以这个题肯定会爆long long,所以需要高精度, 那么接下来就是如何计算答案了.

首先我们知道 ans[1] = ans[2] = 1;
n >= 3 时,我们考虑拿掉点 1 和点 2 的情况, 假设点 2 所在的连通块共 k 个点,这 k 个点与剩下的 n - k 个点分别处于一个连通块中, 共有ans[k] * ans[n-k] 种, 点 2 所在的连通块是需要从除去点 1 和点 2 剩下的点中选取 k-1 个点,则有C(n-2,k-1)种,而这 k 个点必须通过点 1 才能与点 1 所在的连通块相连,于是有2 ^k - 1 种,
所以答案为:
$ ans(n)=Sum(ans(k)ans(n-k) C(n-2,k-1)*( 2^k-1) | 1<=k<n )$

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#include <algorithm>
#include <cassert>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <string>
#include <vector>
#include <cmath>
using namespace std;

struct BigInteger {
typedef unsigned long long LL;

static const int BASE = 100000000;
static const int WIDTH = 8;
vector<int> s;

BigInteger& clean(){while(!s.back()&&s.size()>1)s.pop_back(); return *this;}
BigInteger(LL num = 0) {*this = num;}
BigInteger(string s) {*this = s;}
BigInteger& operator = (long long num) {
s.clear();
do {
s.push_back(num % BASE);
num /= BASE;
} while (num > 0);
return *this;
}
BigInteger& operator = (const string& str) {
s.clear();
int x, len = (str.length() - 1) / WIDTH + 1;
for (int i = 0; i < len; i++) {
int end = str.length() - i*WIDTH;
int start = max(0, end - WIDTH);
sscanf(str.substr(start,end-start).c_str(), "%d", &x);
s.push_back(x);
}
return (*this).clean();
}

BigInteger operator + (const BigInteger& b) const {
BigInteger c; c.s.clear();
for (int i = 0, g = 0; ; i++) {
if (g == 0 && i >= s.size() && i >= b.s.size()) break;
int x = g;
if (i < s.size()) x += s[i];
if (i < b.s.size()) x += b.s[i];
c.s.push_back(x % BASE);
g = x / BASE;
}
return c;
}
BigInteger operator - (const BigInteger& b) const {
assert(b <= *this); // 减数不能大于被减数
BigInteger c; c.s.clear();
for (int i = 0, g = 0; ; i++) {
if (g == 0 && i >= s.size() && i >= b.s.size()) break;
int x = s[i] + g;
if (i < b.s.size()) x -= b.s[i];
if (x < 0) {g = -1; x += BASE;} else g = 0;
c.s.push_back(x);
}
return c.clean();
}
BigInteger operator * (const BigInteger& b) const {
int i, j; LL g;
vector<LL> v(s.size()+b.s.size(), 0);
BigInteger c; c.s.clear();
for(i=0;i<s.size();i++) for(j=0;j<b.s.size();j++) v[i+j]+=LL(s[i])*b.s[j];
for (i = 0, g = 0; ; i++) {
if (g ==0 && i >= v.size()) break;
LL x = v[i] + g;
c.s.push_back(x % BASE);
g = x / BASE;
}
return c.clean();
}
BigInteger operator / (const BigInteger& b) const {
assert(b > 0); // 除数必须大于0
BigInteger c = *this; // 商:主要是让c.s和(*this).s的vector一样大
BigInteger m; // 余数:初始化为0
for (int i = s.size()-1; i >= 0; i--) {
m = m*BASE + s[i];
c.s[i] = bsearch(b, m);
m -= b*c.s[i];
}
return c.clean();
}
BigInteger operator % (const BigInteger& b) const { //方法与除法相同
BigInteger c = *this;
BigInteger m;
for (int i = s.size()-1; i >= 0; i--) {
m = m*BASE + s[i];
c.s[i] = bsearch(b, m);
m -= b*c.s[i];
}
return m;
}
// 二分法找出满足bx<=m的最大的x
int bsearch(const BigInteger& b, const BigInteger& m) const{
int L = 0, R = BASE-1, x;
while (1) {
x = (L+R)>>1;
if (b*x<=m) {if (b*(x+1)>m) return x; else L = x;}
else R = x;
}
}
BigInteger& operator += (const BigInteger& b) {*this = *this + b; return *this;}
BigInteger& operator -= (const BigInteger& b) {*this = *this - b; return *this;}
BigInteger& operator *= (const BigInteger& b) {*this = *this * b; return *this;}
BigInteger& operator /= (const BigInteger& b) {*this = *this / b; return *this;}
BigInteger& operator %= (const BigInteger& b) {*this = *this % b; return *this;}

bool operator < (const BigInteger& b) const {
if (s.size() != b.s.size()) return s.size() < b.s.size();
for (int i = s.size()-1; i >= 0; i--)
if (s[i] != b.s[i]) return s[i] < b.s[i];
return false;
}
bool operator >(const BigInteger& b) const{return b < *this;}
bool operator<=(const BigInteger& b) const{return !(b < *this);}
bool operator>=(const BigInteger& b) const{return !(*this < b);}
bool operator!=(const BigInteger& b) const{return b < *this || *this < b;}
bool operator==(const BigInteger& b) const{return !(b < *this) && !(b > *this);}
};

ostream& operator << (ostream& out, const BigInteger& x) {
out << x.s.back();
for (int i = x.s.size()-2; i >= 0; i--) {
char buf[20];
sprintf(buf, "%08d", x.s[i]);
for (int j = 0; j < strlen(buf); j++) out << buf[j];
}
return out;
}

istream& operator >> (istream& in, BigInteger& x) {
string s;
if (!(in >> s)) return in;
x = s;
return in;
}
BigInteger ans[51],c[51][51];

void init(){
for(int i = 1; i <= 50; ++i)
c[i][0] = c[i][i] = 1;
for(int i = 2; i <= 50; ++i)
for(int j = 1; j < i; ++j)
c[i][j] = c[i-1][j] + c[i-1][j-1];
ans[1] = ans[2] = 1;
for(int i = 3; i <= 50; ++i){
for(int j = 1; j < i; ++j){
long long tmp = (pow(2,j)-1);
ans[i] = ans[i] + ans[j] * ans[i-j]* c[i-2][j-1] * tmp;
}
}
}

int main(){
init();
int n;
while(scanf("%d", &n) && n){
cout<<ans[n]<<endl;
}
}