题目
We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (x^i mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input
Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.
Output
For each p, print a single number that gives the number of primitive roots in a single line.
Sample Input
23
31
79
Sample Output
10
8
24
题意:
给你一个奇素数, 求它原根的个数.
思路:
定义:n的原根x满足条件0<x<n,并且有集合{ (x^i mod n) | 1 <= i <=n-1 } 和集合{ 1, ..., n-1 }相等
定理:如果p有原根,则它恰有φ(φ(p))个不同的原根,p为素数,当然φ(p)=p-1,因此就有φ(p-1)个原根.
代码:
1 |
|