Everyone knows what the Fibonacci sequence is. This sequence can be defined by the recurrence relation:
F1 = 1, F2 = 2, Fi = Fi - 1 + Fi - 2 (i > 2).
We'll define a new number sequence Ai(k) by the formula:
Ai(k) = Fi × i^k (i ≥ 1).
In this problem, your task is to calculate the following sum: A1(k) + A2(k) + ... + An(k). The answer can be very large, so print it modulo 1000000007 (109 + 7).
Input
The first line contains two space-separated integers n, k (1 ≤ n ≤ 1e17; 1 ≤ k ≤ 40).
Output
Print a single integer — the sum of the first n elements of the sequence Ai(k) modulo 1000000007 (1e9 + 7).
typedeflonglong LL; constint mod = 1e9+7; int c[45][45]; LL m;
structmat{ LL a[85][85]; mat (){memset(a,0 ,sizeof(a)); } mat operator *(const mat q){ mat c; for(int i = 1; i <= m; ++i) for(int k = 1; k <= m; ++k) if(a[i][k]) for(int j = 1; j <= m; ++j){ c.a[i][j] += a[i][k] * q.a[k][j]; if (c.a[i][j] >= mod) c.a[i][j] %= mod; }return c; } };
mat qpow(mat x, LL n){ mat ans; for(int i = 1; i <= 84; ++i) ans.a[i][i] = 1; while(n){ if (n&1) ans = ans * x; x = x * x; n >>= 1; }return ans; }
voidinit(){ for(int i = 0; i <= 41; ++i) c[i][0] = c[i][i] = 1; for(int i = 1; i <= 41; ++i) for(int j = 1; j < i; ++j) c[i][j] = (c[i-1][j] + c[i-1][j-1]) % mod; }
intmain(){ LL n, k; init(); scanf("%lld %lld", &n, &k); mat ans; m = 2 * k + 3; ans.a[1][1] = 1; for(int i = 2; i <= m; ++i){ ans.a[i][1] = 0; ans.a[1][i] = c[k][(i-2)%(k+1)]; }for(int i = 2; i <= k+2; ++i) for(int j = 2; j <= i;++j) ans.a[i][j] = ans.a[i][j+k+1] = ans.a[i+k+1][j] = c[i-2][j-2]; ans = qpow(ans,n-1); LL sum = 0; for(int i = 1; i <= m; ++i) sum = (sum + ans.a[1][i]) % mod; printf("%lld\n",sum); return0; }