Where a, b, n, m are positive integers.┌x┐is the ceil of x. For example, ┌3.14┐=4. You are to calculate S n.
You, a top coder, say: So easy!
Input
There are several test cases, each test case in one line contains four positive integers: a, b, n, m. Where 0< a, m < 2 ^15, (a-1)^ 2< b < a^ 2, 0 < b, n < 2 ^31.The input will finish with the end of file.
Output
For each the case, output an integer S n.
Sample Input
2 3 1 2013
2 3 2 2013
2 2 1 2013
Sample Output
4
14
4
题意:
如同题目公式描述的那样.
思路:
矩阵快速幂,
我们设 x, y为未知数,那么(a+b)n = x + y * b 的形式,其他x, y为整数,又因为(a−1)2< b <$ a^ 2$ ,那么a - 1 $\lt \sqrt b \lt $ a,于是ceil(b) = a; 于是 (a−b)n< 1,而它与(a+b)n 相加后展开式中会抵消掉待有根号的项, 而我们又知道 (a+b)n+1 =$x_{n+1} + y_{n+1} * \sqrt b $ = ( xn+yn∗b ) *($ a + \sqrt b$) = (xn∗a+ynb)+(a∗yn+xn)∗b由此我们可以构造出递推式, xn+1=xn∗a+yn∗b, yn+1=xn+yn∗a;
又因为我们知道(a+b)n+(a−b)n=2∗xn, 而且(a−b)n< 1,所以ceil((a+b)n) = 2∗xn,
typedeflonglong LL; LL a, b,n, m; structmat{ LL a[3][3]; mat(){memset(a, 0, sizeof(a)); } mat operator *(const mat q){ mat c; for(int i = 1; i <= 2; ++i) for(int j = 1; j <= 2; ++j) if(a[i][j]) for(int k = 1; k <= 2; ++k){ c.a[i][k] += a[i][j] * q.a[j][k]; if (c.a[i][k] >= m) c.a[i][k] %= m; }return c; } };
mat qpow(mat x, LL n){ mat ans; ans.a[1][1] = ans.a[2][2] = 1; while(n){ if (n&1) ans = ans * x; x = x * x; n >>= 1; }return ans; }
intmain(){ while(scanf("%lld %lld %lld %lld", &a, &b, &n, &m) != EOF){ mat ans; a = a % m; b = b %m; ans.a[1][1] = ans.a[2][2] =a; ans.a[1][2] = b; ans.a[2][1] = 1; ans = qpow(ans, n); LL sum = ans.a[1][1]; sum = (sum * 2) % m; printf("%lld\n",sum); }return0; }